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The plane wave packet approach to quantum scattering theory

STUART C. ALTHORPE{

Department of Chemistry, University of Exeter, Stocker Road,
Exeter EX4 4QD, UK

The Plane Wave Packet (PWP) approach is a new formulation of quantum
scattering theory which interprets the results of (energy-domain) scattering
experiments in terms of time-evolving wave packets. The wave packets allow
one to visualize the scattering of the collision products in space, and thus link the
dynamics on the potential surface with the angular distributions measured in
experiments. Here we review the theoretical basis of the PWP approach, its
connection with conventional quantum scattering theory, and the applications
that have been made of it to date. These include calculations on simple model
systems, and on the HþH2, HþD2 and FþHD reactions. We give a thorough
explanation of the theoretical basis of the PWP approach, which includes a review
of the relevant parts of the literature on time-independent reactive scattering. We
explain in detail how the PWP approach can be used to separate out different
scattering mechanisms, and how such interpretations complement those of time-
independent scattering theory.We also suggest possible future developments of the
approach.
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1. Introduction

The Plane Wave Packet (PWP) approach is a recently developed [1–11]
formulation of quantum scattering theory, which interprets the results of reactive
scattering experiments [1, 9–13] in terms of time-dependent wave packets. The
motivation for the approach is to yield for bimolecular reactions the sort of
time-evolving pictures that femtosecond spectroscopy [14, 15] yields for unimole-
cular reactions.1 The PWP formulation is completely general, and applicable to any
bimolecular reaction, or indeed collision between two quantum objects. However,
since it requires the solution of the full Schrödinger equation for the reaction
dynamics, it is limited computationally to the simple, prototypical, reactions that
are often studied using conventional scattering theory [16]. To date, the PWP
approach has yielded new insights into the scattering of the HþD2 [1, 2, 8] and
FþHD [3, 4] reactions, and into geometric (Berry) phase effects in the HþH2

reaction [5, 6], and is currently being applied to some simple four-atom reactions.
Bimolecular reactions differ from unimolecular reactions in that they are much

more directional. Every dynamical event that happens in a bimolecular reaction has
reference to the initial approach direction of the reagents. Even when the reaction
mechanism is such as to ‘forget’ this approach direction, this is significant, and
characterizes the mechanism as a statistical one. Often, however, the mechanisms
‘remember’ strongly the approach direction, and there are well characterized
examples in the literature [17] of, for example, backward scattering recoil mecha-
nisms, forward scattering glancing mechanisms, and so on. The PWP approach gives
a wave packet description of such processes, and therefore describes them as though
they were taking place in a femtochemistry experiment. An essential feature of the
PWP approach is that, when transformed to the energy domain, the wave packet
yields the angular product distributions or differential cross-sections (DCSs), which
are measured in reactive scattering experiments. The latter [11–13] have seen an
impressive increase in the detail and the resolution in which they can measure the
DCSs, and sometimes other, yet more detailed, quantities [18]. The PWP method

1To our knowledge, no femtochemistry experiment has yet been done on a full
bimolecular reaction; the closest to such an experiment are the studies of photoinduced
reactions in van der Waals molecules; see e.g. [15].
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provides a means of exploiting to the full this data, by providing a rigorous time-
dependent interpretation of the DCS which complements the interpretations of
conventional scattering theory.

The difference between the PWP approach and conventional scattering theory is
not simply that the former is time-dependent, and the latter time-independent. The
two approaches also differ in where and when they prepare the reagents and detect
the products. Conventional scattering theory [19–21] is effectively the extreme limit
of a wave packet theory, in which the spread of energies in the packet tends to zero,
and the initial wave packet is prepared in the remote past, with the reagents sepa-
rated by an asymptotically large distance; the products are detected in the remote
future, when they also are separated by an asymptotically large distance. These limits
are needed in order to obtain a time-independent ‘steady state’ description of the
reaction. The PWP approach, by contrast, takes no such limits [7]. The reagents are
described by a plane wave packet, which contains a finite spread of energies, as
would a wave packet prepared in a femtochemistry experiment. The reagents are
separated by the smallest distance at which the interaction potential can be neglected
(typically 10–20 a.u.). The products are detected at a similar distance, by projecting
the time-evolving wave packet on to fixed ‘probe’ packets (which are also plane
waves). Despite the difference between the two approaches, they yield physically
equivalent descriptions of the scattering, which can readily be interconverted [7, 8].

Because of this last point, it is possible to obtain the time-evolving wave packets
of the PWP approach from time-independent wave functions (and vice versa). Hence
it is not necessary to use wave packet methods of solving the Schrödinger equation in
order to apply the PWP approach. However, it is usually numerically more efficient
to use wave packet methods, since otherwise one would have to repeat a time-
independent calculation over a grid of energies. Nevertheless, it is worth bearing in
mind that the PWP approach can be used with time-independent methods, if only to
clarify that the PWP approach is a method of interpretation, rather than a numerical
method of solving the Schrödinger equation. Regarding the latter, there are a variety
of excellent methods in the literature [22–29], which could be adapted to implement
efficiently the PWP approach.

This review gives a thorough overview of the PWP approach, and pays particu-
lar attention to its relation to conventional time-independent scattering theory. In
section 2, we summarize the key results of the PWP formulation of scattering theory,
for the simplest example of spherical-particle scattering. In section 3, we provide a
detailed derivation of the PWP approach, as applied to AþBC reactive scattering.
This section is an expanded version of the theory part of ref. [8], and includes extra
background material on time-independent AþBC scattering, in order to clarify the
relation of the latter to the PWP description. Section 4 ties together the recent
applications of the PWP approach, describing the new insights it has yielded into the
dynamics of the HþH2, HþD2 and FþHD reactions. It also discusses the best way
to implement numerically the PWP approach. In section 5, we suggest possible future
developments of the approach, and conclude the review.

2. Key elements of the plane wave packet (PWP) approach

We begin with a summary of the key elements of the plane wave packet (PWP)
formulation of quantum scattering. We draw mostly on ref. [7], in which the PWP
approach is derived and explained for the simplest case of spherical-particle
scattering.
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2.1. The time-dependent wave packet
The PWP approach is illustrated schematically in figure 1. The scattering of the

particle is described in terms of the usual spherical polar coordinates R ¼ ðR, �,�Þ, of
which R is the distance of the particle from the scattering centre, � is the scattering
angle with respect to the initial approach direction along the z-axis, and � is the
azimuthal angle. For spherical-particle scattering, the wave function is symmetric
about the z-axis, so the angle � can be dropped. A key assumption [7] behind the
PWP approach is that the scattering potential V(R) has a finite range, and may be
neglected for R > R0. This assumption could, however, be relaxed, for example to
treat charged-particle scattering (by constructing the wave packets from Coulombic
functions).

At the initial time t¼ 0, the system is described by a plane wave packet

�ðRjko, z0j0Þ ¼ Aðz� z0Þe
ikoz: ð1Þ

The packet is travelling in the direction of the positive z-axis, as shown schematically
in figure 1. The envelope Aðz� z0Þ is chosen so as to localize the packet about a
negative z distance, as close to the scattering centre as possible, without the packet
significantly overlapping the potential. The momentum composition of the packet
is given by

Aðkjko, z0Þ ¼
1

2�

Z 1
�1

e�ikz�ðRjko, z0j0Þ dz ð2Þ

Figure 1. Schematic diagram of the plane wave packet approach, showing a �¼ 0 cut
through the three-dimensional space in which the particle scatters. The initial plane
wave packet is placed at the shortest distance jz0j from the origin at which the
scattering potential can be neglected, and is travelling in the direction of the z-axis.
The DCS is obtained by projecting the scattered wave packet on to a series of fixed,
plane wave probe packets. One such probe packet is shown, pointing in the direction
� ¼ �p. (Reproduced with permission from ref. [7].)
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and the average momentum in the positive z-direction is ko�hh. The dynamics of the
particle at t > 0 is described by the time-dependent wave packet

�ðRjko, z0jtÞ ¼ e�iĤHt=�hh�ðRjko, z0j0Þ ð3Þ

where ĤH is the hamiltonian.
A simple example of such a wave packet is given in figure 2, which shows a plane

wave scattering from a hard sphere. The width of the sphere (not shown) is 3.0 a.u.
The well-known ‘shadow effect’ [21] is evident in the figure at times greater than
t ¼ 24 fs. This is about as simple a system as one could choose, and gives a clear
illustration of why the PWP method is so useful for describing more complex
systems. We can see that the scattering is given a clear, physically transparent
visualization, which is easy to compare with an intuitive classical picture. Details that
show up very well in the wave packet include the development of the diffractive
interference pattern in the forward direction, and the off-centre evolution of the
backward and sideways scattered ‘ring’.

A wave packet such as figure 2 gives a time-dependent description of the scatter-
ing in the vicinity of the potential. To compare this description with experiment, one
needs to relate the wave packet to the time-independent, asymptotic, description,
given by the DCS. To this end, one needs first to relate the wave packet to the
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Figure 2. Snapshots of a plane wave packet scattering from a hard sphere of radius 3 a.u.

Each snapshot is a �¼ 0 cut through j�ðRjko, z0jtÞj
2R2. (Reproduced with permission

from ref. [7].)
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time-independent wave function �ðRjE Þ of conventional scattering theory
[19–21]. This is done by taking the Fourier transform over t, to obtain

�ðRjko, z0jE Þ ¼
1

2��hh

Z 1
0

eiEt=�hh�ðRjko, z0jtÞ dt: ð4Þ

The time-independent wave function �ðRjko, z0jEÞ is an example of a ‘time-
independent wave packet’ (TIWP) [30], and is the solution of an inhomogeneous
form of the time-independent Schrödinger equation. One may show (Appendix A of
Ref. [7]) that �ðRjE Þ is related to �ðRjko, z0jE Þ by

�ðRjE Þ ¼
�hh2k

mAðkjko, z0Þ
�ðRjko, z0jE Þ ð5Þ

where m is the mass of the particle, and �ðRjE Þ satisfies the usual scattering bound-
ary condition [19–21],

�ðRjE Þ�!eikz þ
f ð�,E Þ

R
eikR as R!1: ð6Þ

2.2. Close-up angular distributions
Before discussing the relation of the wave packet to the DCS, it is useful to stay

with the picture of the scattering given by the wave packet, and obtain its angular
distribution in the vicinity of the scattering potential. Following ref. [7] we will call
this the ‘close-up’ angular distribution, and will introduce it in its time-dependent
form, ~��ð�, tÞ, and its time-independent form ~��ð�,E Þ. These distributions are taken
over a sphere which just encloses the scattering potential. Although they have not
been used to date when interpreting chemical reactions, the close-up distributions
are potentially very useful, since they can identify separate pieces of scattering,
arising from different regions of the potential, which come together and interfere in
the DCS.

To obtain the time-dependent distribution ~��ð�, tÞ, we take a cut through the
wave packet at the angle �, then calculate the flux of the wave packet normal to
a sphere that just encloses the scattering potential. This is done by projecting on to
a radial ‘probe’ packet �ðRjkp,RpÞ=R, which is localized about R ¼ Rp > R0,
and contains a spread of momenta pointing radially outwards, with average
momentum �hhkp. The spread of momenta in �ðRjkp,RpÞ is chosen to enclose the
momenta contained in Aðkjko, z0Þ of equation (2). This yields the close-up scattering
amplitude

~ff ð�, tÞ ¼ �ðkp,RpÞ
���OUTð�jko, z0jtÞ

� �
ð7Þ

where we have omitted from �ðRjkp,RpÞ and �OUTðRjko, z0jtÞ the variable R
over which we have integrated. (This convention is used throughout the review.)
The superscript ‘OUT’ indicates that the unscattered (i.e. pure plane wave) part
of the wave packet has been subtracted from �ðRjko, z0jtÞ. For example, the
�OUTðRjko, z0jtÞ corresponding to the hard-sphere wave packet of figure 2 is
shown in figure 3.
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The close-up, time-dependent angular distribution is

~��ð�, tÞ ¼ ~ff ð�, tÞ
��� ���2 ð8Þ

and the close-up, time-independent distribution is

~��ð�,EÞ ¼ ~ggð�,EÞ
�� ��2 ð9Þ

where ~ggð�,E Þ is the time-to-energy Fourier transform of ~ff ð�, tÞ.
The usefulness of the close-up angular distributions is illustrated by the cut

through ~��ð�,E Þ, shown in figure 4, which is obtained from the hard-sphere
�OUTðRjko, z0jtÞ shown in figure 3. The most striking difference between ~��ð�,E Þ
and the DCS occurs in the forward direction, where the diffractive interference
pattern in the latter is completely absent from the close-up distribution. This
demonstrates that the interference pattern is not produced at the sphere, but is
produced later, as the packet scatters into space. This simple example shows that the
close-up angular distributions will probably be useful for disentangling similar
interference patterns produced in more complex systems, and would complement
existing semiclassical methods of analysis [31].

2.3. Mapping the wave packet on to the DCS
We now return to the relation between the wave packet and the DCS, explaining

how to map �ðRjko, z0jtÞ on to the DCS, so that it can be used directly and
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Figure 3. Same as figure 4 for j�OUTðRjko, z0jtÞj
2R2 (the scattered component of the wave

packet). (Reproduced with permission from ref. [7].)
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quantitatively to interpret experimental results. The mapping is analogous to a
technique which, in electromagnetic wave scattering, is called the ‘near-field to far-
field’ transformation [32, 33]. In the PWP approach [7], the mapping is essentially an
application of Newton’s first law to the motion of the wave packet for R > R0. It
projects out the component of the packet whose momentum vector points in the
direction of a given angle � (and which therefore scatters into this angle in the limit
R!1). This is done by projecting �OUTðRjko, z0jtÞ on to a set of probe packets,
one of which is illustrated schematically in figure 1. The probe packets are a set of
plane wave packets, held tangentially to a sphere of radius Rp. Each packet points
in a different scattering direction �p, and has the general form

�ðRj�p, kp, qpÞ ¼ Aðq� qpÞ e
ikpq: ð10Þ

The envelope function Aðq� qpÞ is chosen such that �ðRj�p, kp, qpÞ is localized about
the distance q ¼ qp along the q-axis (a vector pointing in the direction of �p; see
figure 1). The spread of �hhjkj in �ðRj�p, kp, qpÞ must enclose the spread of �hhjkj in the
initial wave packet �ðRjko, z0j0Þ. Note that probe packets were first used in non-PWP
(fixed-J ) wave packet calculations, where they are called ‘test functions’ [34].

The projection on to �ðRj�p, kp, qpÞ effectively ‘captures’ all those parts of
the packet which, in the limit R!1, will scatter into � ¼ �p. It yields the
time-dependent scattering amplitude

f ð�p, tÞ ¼ �ð�p, kp, qpÞ
���OUTðko, z0jtÞ

� �
ð11Þ

from which we obtain (dropping the ‘p’ subscripts) the ‘time-dependent DCS’2

d�

d�
ð�, tÞ ¼ f ð�, tÞ

�� ��2: ð12Þ

The time-dependent DCS corresponding to the wave packet of figures 2 and 3 is
shown in figure 5. Its main use is to summarize the mapping of the wave packet on to

2This time-dependent angular distribution is not strictly a cross-section, but the name
seems appropriate given its close relation to the time-independent DCS.
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Figure 4. A cut (at E¼ 1 eV) through the time-independent angular distributions obtained
from the scattered wave packet of figure 3. Curve (a) is the time-independent DCS
d�=d�ð�,E Þ; curve (b) is the close-up angular distribution ~��ð�,E Þ. The curves have
been scaled to fit on the same plot. (Reproduced with permission from ref. [7].)
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the (energy-domain) DCS. The mapping is completed by evaluating the Fourier
transform

gð�,E Þ ¼
1

2��hh

Z 1
0

eiEt=�hhf ð�, tÞ dt ð13Þ

The amplitude gð�,E Þ is proportional to the time-independent scattering amplitude
f ð�,E Þ of equation (6) according to

f ð�,E Þ ¼
gð�,E Þ

Fðko, z0, kp, qpjE Þ
ð14Þ

where Fðko, z0, kp, qpjE Þ is an energy filter [7]. The DCS is obtained from f ð�,E Þ
using the familiar expression [19–21]

d�

d�
ð�,E Þ ¼ f ð�,E Þ

�� ��2: ð15Þ

Thus a time-evolving wave packet, such as the one shown in figure 2, can be mapped
rigorously on to the DCS, and used to interpret features in the latter in terms of the
time-dependent dynamics on the potential surface. The mapping can be summarized
by plotting the time-dependent DCS. For such a simple example as the hard-sphere
system, there is little that the wave packet can ‘interpret’ in the DCS. As one would
expect, the wave packet scatters earlier at smaller scattering angles, and the forward
peak is spread out in time, and contains interference effects. The more complex
systems discussed in the next two sections will show how the mapping of the wave
packet on to the DCS gives new insights into the dynamics, which complement those
obtained from time-independent scattering.

3. PWP theory for AþBC reactive scattering

This section gives a thorough derivation of the PWP approach for AþBC reac-
tive scattering. This derivation is a more complete version of one published recently
[8], augmented to review the relevant parts of the literature for time-independent
reactive scattering. The main part of the derivation concerns the relation between the
wave packet and the DCS, and is carried out by making a partial wave expansion.
This approach is formally equivalent to proving the relation by the application of
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t (fs)

(d
eg

)

Figure 5. The time-dependent DCS d�=d�ð�, tÞ, corresponding to the wave packet of
figure 3. (Reproduced with permission from Ref. [7].)
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Green’s theorem (which is how the analogous ‘near-field to far-field’ transformation
is derived in the electromagnetic scattering literature [32, 33]).

3.1. Atom–rigid-rotor scattering in SF frame
The main task in applying the PWP approach to treat three-atom reactive scat-

tering is to incorporate the effects of the diatom angular momentum (which couples
with the superposition of angular momenta in the plane wave packet). Following
Ref. [8], we consider first the case of atom–rigid-rotor scattering, which is the
simplest system to incorporate these effects. Here we use the space-fixed (SF) frame
for the angular momenta, since this simplifies the derivation. The transformation of
these results to the body-fixed (BF) frame (which is often more convenient for
describing reactive scattering) is covered in section 3.2.

3.1.1. Wave packets and time-independent wave functions
To treat AþBC atom–rigid-rotor scattering, we use the coordinates ð�,�Þ which

orient the diatomic axis in the SF frame. The coordinates R ¼ ðR, �,�Þ are the usual
AþBC centre-of-mass (CM) scattering coordinates [35–38], with R the length of the
A–BC intermolecular axis, and ð�,�Þ the orientation of this axis in the SF frame. The
SF z-axis is the initial A!BC approach direction.

The initial t¼ 0 wave packet has the form [8]

� jmj ðR, �,�j0Þ ¼ �ðzjko, z0j0ÞYjmj
ð�,�Þ ð16Þ

where �ðzjko, z0j0Þ is a plane wave packet [defined in equation (1)], Yjmj
ð�,�Þ is a

spherical harmonic [39], j is the angular momentum quantum number of the BC
diatom, and mj is the projection of j on to the SF z-axis. As in the spherical-particle
case, we can neglect the �-dependence (provided we start with AB in one rotational
eigenstate, and not a superposition of states). The ensuing collision and scattering
dynamics is described by the time-dependent wave packet

� jmj ðR, �,�jtÞ ¼ e�iĤHt=�hh� jmj ðR, �,�j0Þ ð17Þ

where ĤH is the full hamiltonian (including the A–BC interaction potential). For
clarity, we have simplified the notation by dropping the details of the initial plane
wave packet (ko, z0) from � jmj ðR, �,�jtÞ. These details should always be understood
in what follows.

It is useful to separate off the scattered part of the wave packet,

� jmj OUTðR, �,�jtÞ ¼ � jmj ðR, �,�jtÞ � � jmj PWðR, �,�jtÞ ð18Þ

from the unscattered AþBC plane wave packet

� jmj PWðR, �,�jtÞ ¼ e�iĤH0t=�hh� jmj ðR, �,�j0Þ ð19Þ

where H0 is the hamiltonian for the non-interacting AþBC.
Following section 2.1, we need to relate � jmj ðR, �,�jtÞ to the time-independent

wave function � jmj ðR, �,�jE Þ. The time-to-energy Fourier transform of
� jmj ðR, �,�jtÞ yields

� jmj ðR, �,�jE Þ ¼
1

2��hh

Z 1
0

eiEt=�hh� jmj ðR, �,�jtÞ dt: ð20Þ
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The function � jmj ðR, �,�jE Þ is a TIWP solution [30], which is a generalization of
�ðRjko, z0jE Þ of equation (4). In the appendix, we show that

� jmj ðR, �,�jE Þ ¼
�hh2kj

	Aðkjjko, z0Þ
� jmj ðR, �,�jE Þ ð21Þ

where Aðkjjko, z0Þ is the momentum composition of �ðzjko, z0j0Þ [defined in equation
(2)], 	 is the reduced mass associated with motion along the R coordinate, and
kj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ðE � 
jÞ

p
=�hh, with 
j the rotational energy of the diatom. The boundary

conditions satisfied by � jmj ðR, �,�jE Þ in the limit R!1 are [35–38]

� jmj ðR, �,�jEÞ ! eikjzY jmj
ð�,�Þ þ

1

R

X
j0m0

j

eikj0RYj0m0j
ð�,�Þf

jmj

j0m0j
ð�,�jE Þ ð22Þ

where f
jmj

j0m0j
ð�,�jE Þ is the state-to-state scattering amplitude (from which we can

drop the angle �). The DCS is given by

d�j0m0
j
 jmj

d�
ð�,E Þ ¼

kj0

kj
f
jmj

j0m0
j
ð�,E Þ

��� ���2: ð23Þ

3.1.2. Partial wave expansion
We now show that there is a direct relation between � jmj OUTðR, �,�jtÞ and the

DCS, which is a generalization of equations (11)–(15). To derive this relation, we
expand the wave packets and wave functions in terms of partial waves (eigenfunc-
tions of the total angular momentum operators). The partial wave expansion of the
time-independent wave function � jmj ðR, �,�jE Þ can be written [35–38]

� jmj ðR, �,�jE Þ ¼
X1
J¼0

�
jmj

J ðR, �,�jE Þ ð24Þ

where J is the total angular momentum quantum number. Each partial wave
component �

jmj

J ðR, �,�jE Þ can be further expanded, in terms of the basis functions

GljM
J ð�,�; �,�Þ ¼

X
mmj

Ylmð�,�ÞYjmj
ð�,�Þ lmjmjjJM

� �
ð25Þ

where l is the end-over-end angular momentum quantum number, lmjmjjJM
� �

is
a Clebsch–Gordan coefficient [39], and M is the projection of J on to the z-axis.
For �

jmj OUT
J ðR, �,�jE Þ [defined by expanding � jmj OUTðR, �,�jE Þ in analogy with

equation (24)], the expansion is [35–38]

�
jmj OUT
J ðR, �,�jE Þ ¼

i
ffiffiffi
�
p

kjR

X
ll0j0

il
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
p

l0jmjjJmj

� �

� G
l0j0mj

J ð�,�; �,�Þ�ljOUT
l0j0J ðRjE Þ: ð26Þ

The components �ljOUT
l0j0J ðRjE Þ satisfy

�ljOUT
l0j0J ðRjE Þ ¼ ĥh

þ

l0 ðkj0RÞT
lj
l0j0JðE Þ for R > R0 ð27Þ
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where, as in section 2, it is assumed that the scattering potential can be neglected for
R > R0. The T-matrix Tlj

l0j0JðE Þ is related to the S-matrix by

Tlj
l0j0JðE Þ ¼ �ll0�jj0 � Slj

l0j0JðE Þ: ð28Þ

The TIWP solution and the time-dependent wave packets can be expanded in the
same fashion:

� jmj ðR, �,�jE Þ ¼
X1
J¼0

�
jmj

J ðR, �,�jE Þ ð29Þ

� jmj ðR, �,�jE Þ ¼
X1
J¼0

�
jmj

J ðR, �,�jE Þ: ð30Þ

From the orthogonality of the GljM
J ð�,�; �,�Þ, we know that, for a given J, the

relations between the partial wave components �
jmj

J ðR, �,�jtÞ, �
jmj

J ðR, �,�jE Þ and
�

jmj

J ðR, �,�jE Þ are the same as those between the full wave functions, given in
equations (20) and (21). Each partial wave packet �

jmj

J ðR, �,�jtÞ satisfies [8]

�
jmj

J ðR, �,�jtÞ ¼ e�iĤHJ t=�hh�
jmj

J ðR, �,�j0Þ ð31Þ

where ĤHJ is the J-dependent hamiltonian for atom–rigid-rotor scattering [35–38]. To
work out the form taken by the initial partial wave packets �

jmj

J ðR, �,�j0Þ, we use a
result of Ref. [7], which is that

�ðzjko, z0j0Þ ¼
1

R

X1
l¼0

ilð2l þ 1ÞPlðcos �Þ�lðRjko, z0j0Þ ð32Þ

where

�lðRjko, z0j0Þ ¼

Z 1
�1

|̂|lðkRÞ
Aðkjko, z0Þ

k
dk ð33Þ

and |̂|lðkRÞ is a Ricatti–Bessel function [19, 20]. The functions �lðRjko, z0j0Þ must in
general be computed numerically (except for the l¼ 0 function), and their depen-
dence on l is discussed in Ref. [7]. Using equation (32) to expand �ðzjko, z0j0Þ in
equation (16), and applying the inverse of equation (25), we obtain

�
jmj

J ðR, �,�j0Þ ¼
2

ffiffiffi
�
p

R

XJþj
l¼jJ�jj

il
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
p

l0jmjjJmj

� �

� G
ljmj

J ð�,�; �,�Þ�lðRjko, z0j0Þ ð34Þ

where, in GljM
J ð�,�; �,�Þ, we have made the substitution M¼mj (since at t¼ 0 the

projection of l on to the z-axis is zero).

3.1.3. Mapping the wave packet on to the DCS
To map the wave packet � jmj OUTðR, �,�jtÞ on to the state-to-state DCS, one must

project out the angular distribution of the velocity vectors contained in the packet,
and the rotational eigenstates of the diatom. This is done in analogy with equation
(11), by evaluating

f
jmj

j0m0
j
ð�p, tÞ ¼ � j0m0j ð�pÞj�

jmj OUTðtÞ
D E

ð35Þ
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where the probe packets are given by

�j0m0j ðR, �,�j�pÞ ¼ �ðRj�p, kp, qpÞYj0m0
j
ð�,�Þ: ð36Þ

The plane wave parts of the probe packets, �ðRj�p, kp, qpÞ, were introduced in
equation (10). They point in the direction � ¼ �p of the q-axis, and are localized
about q ¼ qp, with qp > R0. The function Yj0m0

j
ð�,�Þ serves to project out the final

rotational state of the diatom. By analogy with section 2, we define the state-to-state
time-dependent DCS to be

d� j0m0j jmj

d�
ð�p, tÞ ¼ f

jmj

j0m0
j
ð�p, tÞ

��� ���2 ð37Þ

and introduce the time-independent scattering amplitude

g
jmj

j0m0
j
ð�p,E Þ ¼

1

2��hh

Z 1
0

eiEt=�hhf
jmj

j0m0
j
ð�p, tÞ dt: ð38Þ

Now, referring back to equations (20) and (21), and using equation (35), we can
write g

jmj

j0m0j
ð�p,E Þ as

g
jmj

j0m0
j
ð�p,E Þ ¼

	Aðkjjko, z0Þ

�hh2kj
� j0m0j ð�pÞ

����jmj OUTðE Þ
D E

: ð39Þ

We then expand � jmj OUTðR, �,�jE Þ using equations (24)–(27), and expand the plane
wave part of the probe packet as

�ðRj�p, kp, qpÞ ¼
4�

R

X1
l¼0

Xl

m¼�l

ilY�lmð�p, 0ÞYlmð�,�Þ�lðRjkp, qpÞ: ð40Þ

Using the orthogonality of the spherical harmonics, we obtain

� j0m0j ð�pÞ
����jmj OUTðE Þ

D E
¼

4i�3=2

kj

�
X
Jll0

il�l
0 ffiffiffiffiffiffiffiffiffiffiffiffiffi

2l þ 1
p

Yl0mj�m
0
j
ð�p, 0ÞT

lj
l0j0J ðE Þ

� l0jmjjJmj

� �
l0mj �m0j j

0m0jjJmj

D E
�

Z 1
0

��l0 ðRjkp, qpÞĥh
þ

l0 ðkj0RÞdR: ð41Þ

The integral on the right is independent of l0, and is equal to i�A�ðkj0 jkp, qpÞ=kj0

(see Appendix B of Ref. [7]). Hence, dropping the ‘p’ subscripts, and using the
well-known expansion [36–38]

f
jmj

j0m0j
ð�,E Þ ¼

ffiffiffi
�
p

kj

X
Jll0

il�l
0þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
p

Yl0mj�m
0
j
ð�, 0ÞTlj

l0j0J ðE Þ

� l0jmjjJmj

� �
l0mj �m0j j

0m0jjJmj

D E ð42Þ

we obtain

f
jmj

j0m0j
ð�,E Þ ¼

g
jmj

j0m0
j
ð�,E Þ

F j
j0 ðko, z0, kp, qpjE Þ

ð43Þ

The PWP approach to scattering theory 231

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



with

F j
j0 ðko, z0, kp, qpjE Þ ¼

4�2i	

kjkj0�hh2
Aðkjjko, z0ÞAðkj0 jkp, qpÞ

�: ð44Þ

The state-to-state DCS can then be obtained from f
jmj

j0m0
j
ð�,E Þ using equation (23).

This is the desired result, that the simple steps outlined in section 2 also apply to the
more complicated multichannel case of AþBC rigid-rotor scattering. One can
compute the time-evolving wave packet, map it on to the DCS, and illustrate the
mapping using the time-dependent DCS.

3.2. Atom–rigid-rotor scattering in BF frame
In a practical reactive scattering calculation, the wave packet is often computed

in terms of body-fixed (BF) coordinates, in which the intermolecular axis becomes
the BF z-axis, and the diatom is oriented within the BF frame, using the angles ð ~��, ~��Þ.
Here, we transform the results of the previous section from the SF frame to the BF
frame.

3.2.1. SF to BF transformation
Before explaining how to implement the plane wave packet method in BF

coordinates, we review the SF to BF transformation as it is used in time-independent
reactive scattering [35–38]. In place of the SF basis functions GljM

J ð�,�; �,�Þ, the wave
function is expanded in terms of the BF basis functions

~GG
j�M

J ð�,�; ~��, ~��Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4�

r
dJ
M�ð�Þe

iM�Yj�ð ~��, ~��Þ ð45Þ

in which dJ
M�ð�Þ is a reduced Wigner rotation matrix [39] and � is the projection on

to the BF z-axis of j (which is equal to the projection of J ). The transformation
between the BF and SF basis functions is

~GG
j�M

J ð�,�; ~��, ~��Þ ¼
X
l

Cðl, j,�jJÞGljM
J ð�,�; �,�Þ ð46Þ

where

Cðl, j,�jJ Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

2J þ 1

r
l0j�jJ�
� �

: ð47Þ

When re-expressed in terms of BF coordinates, the time-independent wave
function � jmj ðR, �,�jE Þ becomes � j�ðR, ~��, ~��jE Þ. The quantum number � is the
projection of j on to the A!BC approach velocity vector. This vector points in the
same direction as the SF z-axis, and in the opposite direction to the BF z-axis, so that
� ¼ mj ¼ ��. The scattered part of the wave function, � j�OUTðR, ~��, ~��jE Þ, satisfies
the boundary conditions [35–38]

� j�OUTðR, ~��, ~��jE Þ�!
1

R

X
j0�0

eikj0RYj0�0 ð ~��, ~��Þ f
j�
j0�0 ð�,�jE Þ ð48Þ

in the limit R!1.
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One can expand � j�OUTðR, ~��, ~��jE Þ in terms of partial waves [in analogy with
equation (24)], and each partial wave component � j�OUT

J ðR, ~��, ~��jE Þ can be further
expanded as

� j�OUT
J ðR, ~��, ~��jE Þ ¼

i

2kjR

X
j0�0

ð2J þ 1ÞdJ
��0 ð�Þe

i��Yj�0 ð ~��, ~��Þ�
j�OUT
j0�0J ðRjE Þ: ð49Þ

In the limit R!1, the BF z-axis lines up with the A!BC velocity vector (since the
AþBC appears to be scattering from a distant point), with the result that �0 ! �0.
Thus the components � j�OUT

j0�0J ðRjE Þ satisfy

� j�OUT
j0�0J ðRjE Þ�!� j�OUT

j0�0J ðRjE Þ ¼ eikjRT j�
j0�0JðE Þ ð50Þ

where

T j�
j0�0JðE Þ ¼

X
ll0

Cðl, j, � �jJ ÞCðl0, j0, �0jJ Þil�l
0

Tlj
l0j0JðE Þ ð51Þ

is the BF T-matrix. The latter can be used to construct the BF state-to-state
scattering amplitude using

f j�
j0�0 ð�,E Þ ¼

i

2kj

X
J

ð2J þ 1ÞdJ
��0 ð�ÞT

j�
j0�0JðE Þ ð52Þ

where we have set �¼ 0. The BF state-to-state DCS is given by [35–38]

d�j0�0 j�

d�
ð�,E Þ ¼

kj0

kj
f j�
j0�0 ð�,E Þ

��� ���2: ð53Þ

3.2.2. PWP theory in BF frame
The wave packet � jmj ðR, �,�jtÞ can be re-expressed in BF coordinates, and

written � j�ðR, ~��, ~��jtÞ, where � ¼ mj (since, as for the time-independent wave function,
the initial velocity vector points along the SF z-axis). Expressing equation (16) in BF
coordinates, gives the following expression for the initial wave packet

� j�ðR, ~��, ~��j0Þ ¼ �ðzjko, z0j0Þ
X
�

d j
��ð�Þe

i��Yj�ð ~��, ~��Þ: ð54Þ

In contrast to the time-independent wave function, we no longer have � ¼ ��. This
is because �ðzjko, z0j0Þ spreads over a range of �, and hence the BF axes of the BC
diatoms are pointing in a range of directions. Only the BC diatoms for which � ¼ �
(i.e. those centred on the z-axis) satisfy � ¼ ��.

Because � j�ðR, ~��, ~��jtÞ and � j�ðR, ~��, ~��jE Þ are simply the SF functions of
section 3.1, re-expressed in BF coordinates, we know that they must satisfy
equations (17)–(21). In particular, we can define the BF version of the TIWP,
� j�ðR, ~��, ~��jE Þ, in analogy with equation (20), and we know that this function is
proportional to � j�ðR, ~��, ~��jE Þ, according to equation (21). By analogy with equation
(30), we can expand the BF wave packet as a sum over partial wave packets
� j�
J ðR, ~��, ~��jtÞ. To obtain the form of the partial wave initial packets, we substitute the

inverse of equation (46) into equation (34), which gives

� j�
J ðR, ~��, ~��j0Þ ¼

1

R

X
�

dJ
��ð�Þe

i��Yj�ð ~��, ~��Þ�
j��
J ðRjko, z0j0Þ ð55Þ
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where

� j��
J ðRjko, z0j0Þ ¼

X
l

ð2l þ 1Þ l0j�jJ�
� �

� l0j�jJ�
� �

il�lðRjko, z0j0Þ:

ð56Þ

To map the wave packet � j�ðR, ~��, ~��jtÞ on to the state-to-state DCS, we project on to
probe wave packets of the form

� j0�0 ðR, ~��, ~��j�pÞ ¼ �ðRj�p, kp, qpÞW
j0�0 ð�,�, ~��, ~��j�pÞ: ð57Þ

The function �ðRj�p, kp, qpÞ is a plane wave packet identical to that used in the SF
probe of equation (36). The rotational function Wj0�0 ð�,�, ~��, ~��j�pÞ serves to project
out the rotational eigenstate j j0�0i, where �0 is the projection of j 0 on to the q-axis
(which points in the direction � ¼ �p). The form of Wj0�0 ð�,�, ~��, ~��j�pÞ is [8]

Wj0�0 ð�,�, ~��, ~��j�pÞ ¼
X
�0

Rj0�0

�0 ð�p, �,�ÞYj0�0 ð ~��, ~��Þ ð58Þ

where the rotation operator Rj0�0

�0 ð�p, �,�Þ is

Rj0�0

�0 ð�p, �,�Þ ¼
X
m0j

d j0

m0
j
�0 ð�pÞd

j0

m0
j
�0 ð�Þe

im0j�:
ð59Þ

Note that the dependence of Wj0�0 ð�,�, ~��, ~��j�pÞ upon ð�,�Þ means that one must take
care to project out j j0�0i before projecting on to the plane wave packet �ðRj�p, kp, qpÞ.
In other words, before projecting on to the plane wave packet, one must line up the
axes of quantization of the diatoms so that they all point in the direction � ¼ �p.

The projection on to the probe packets yields the BF, time-dependent scattering
amplitude

f j�
j0�0 ð�p, tÞ ¼ � j0�0 ð�pÞj�

j�OUTðtÞ
� �

: ð60Þ

By analogy with section 2, we define the time-dependent DCS

d� j0�0 j�

d�
ð�, tÞ ¼ f j�

j0�0 ð�, tÞ
��� ���2 ð61Þ

and the time-independent scattering amplitude

g j�
j0�0 ð�,E Þ ¼

1

2��hh

Z 1
0

eiEt=�hhf j�
j0�0 ð�, tÞ dt: ð62Þ

By applying equations (39)–(44), and using some angular momentum algebra to
convert to the BF frame,3 one can show that

f j�
j0�0 ð�,E Þ ¼

g j�
j0�0 ð�,E Þ

Fj
j0 ðko, z0, kp, qpjE Þ

ð63Þ

where f j�
j0�0 ð�,E Þ is the standard, time-independent scattering amplitude, which yields

the state-to-state DCS via equation (53). Hence the relation between the wave packet
and the DCS is almost as simple and direct in the BF frame as in the SF frame

3The algebra required is not difficult, but is lengthy, and includes two applications of the
Clebsch–Gordan series [39]. It is left as an exercise for the reader.
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(section 3.1). The only additional step required is to rotate the quantization axis of

the BC angular momentum so that it lines up with the q-axis of each probe packet.

3.3. Full AþBC rearrangement scattering

It is straightforward to generalize the forgoing to treat AþBC reactive scatter-

ing, since including the extra degrees of freedom (i.e. allowing the diatomic bond

length to vary, and allowing rearrangement to ACþB and ABþC) does not compli-

cate the simple mapping between the wave packet and the DCS. We derive here the

key equations obtained by generalizing the results of section 3.2, starting with a

review of the essential results from the time-independent treatment of AþBC

reactive scattering [36–38, 40].

3.3.1. Conventional time-independent formulation

To describe AþBC reactive scattering, one must take into account the three

possible arrangements of the atoms. We label these with the parameter 
, where 
 ¼
1 (AþBC), 2 (ACþB), or 3 (ABþC). One can define three sets of coordinates

ðR
, ~��
, ~��
, r
Þ, each adapted to one particular arrangement [38, 40]. For example,

when 
¼1 we have the BF coordinates of section 3.2, plus the additional coordinate

r
, which is the BC bond length. Taken together, the coordinates (R
, ~��
, r
) are the
BF Jacobi coordinates [38, 40], defined with respect to arrangement 
. The three sets
of scattering angles ð�
,�
Þ, are defined with respect to a common SF z-axis, which is

taken to be the reagent approach direction.

The time-independent wave function �n�ðR
, ~��
, ~��
, r
jE Þ satisfies the boundary

conditions [36–38, 40]

�n�OUTðR
, ~��
, ~��
, r
jE Þ�!
X
n0�0

1

R
0
eikn0RYj0�0 ð ~��
0 , ~��
0 Þ�n0 ðr
0 Þf

j�
j0�0 ð�
0 ,�
0 jE Þ ð64Þ

in the limits R
0 ! 1 (
0 ¼ 1, 2, 3). This equation is essentially equation (48), gen-

eralized to include the three product arrangements 
0 ¼ 1, 2, 3, and the diatom vibra-

tional wave functions �n0 ðr
0 Þ. The label n refers collectively to the quantum numbers

f jv
g of the reagents; n0 refers to the quantum numbers f j0v0
0g of the products. As in

section 3.2, � is the projection of j on to the approach velocity of the reagent; �0 is
the projection of j0 on to the velocity of the products (in a given arrangement 
0). The
momentum associated with the nth channel is �hhkn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	
ðE � 
nÞ

p
, where 	
 is the

reduced mass associated with motion along R
, and 
n is the rovibrational energy

level of the diatom. On the right-hand side of equation (64), each arrangement 
0

is represented in terms of the coordinates adapted to that value of 
0. Thus it is

assumed that, when representing �n�ðR
, ~��
, ~��
, r
jE Þ, one can switch between the

three sets of coordinates (using, say, numerical interpolation [27, 38], or a hyper-

spherical coordinate system [40, 41]).

By analogy with equation (24), one can expand �n�ðR
, ~��
, ~��
, r
jE Þ as a sum

over J:

�n�ðR
, ~��
, ~��
, r
jE Þ ¼
X1
J¼0

�n�
J ðR
, ~��
, ~��
, r
jE Þ: ð65Þ
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Each partial wave component �n�
J ðR
, ~��
, ~��
, r
jE Þ can be further expanded in terms

of the basis functions

Yn�M
J ð�
,�
; ~��
, ~��
; r
Þ ¼ ~GG

j�M

J ð�
,�
; ~��
, ~��
Þ�nðr
Þ ð66Þ

where the ~GG
j�M

J ð�
,�
; ~��
, ~��
Þ are defined in equation (45). This gives [36–38]

�n�OUT
J ðR
, ~��
, ~��
, r
jE Þ ¼

i

2kn

X
n0�0

1

R
0
ð2J þ 1ÞdJ

��0 ð�
0 Þe
i��
0Yj0�0 ð ~��
0 , ~��
0 Þ

��n0 ðr
0 Þ�
n�OUT
n0�0J ðR
0 jE Þ

ð67Þ

which is an obvious generalization of equation (49). In the limits R
0 ! 1, the
components �n�OUT

n0�0J ðR
0 jE Þ satisfy

�n�OUT
n0�0J ðR
0 jE Þ�!�n�OUT

n0�0J ðR
0 jE Þ ¼ eiknR
0Tn�
n0�0JðE Þ ð68Þ

where the T-matrix is related to the S-matrix by

Tn�
n0�0JðE Þ ¼ �nn0���0 � Sn�

n0�0JðE Þ: ð69Þ

The inelastic (
0 ¼ 
) and reactive (
0 6¼ 
) scattering amplitudes are given by

f n�n0�0 ð�,E Þ ¼
i

2kn

X
J

ð2J þ 1ÞdJ
��0 ð�ÞT

n�
n0�0JðE Þ ð70Þ

where the 
0 subscript has been dropped from �
0 (since it is unambiguous which of
the three scattering angles is intended). The state-to-state DCS is obtained from
[36–38]

d�n0�0 n�

d�
ð�,E Þ ¼

	
kn0

	
0kn
f n�
n0�0 ð�,E Þ

�� ��2: ð71Þ

3.3.2. PWP formulation
Extension of the PWP approach to reactive AþBC scattering is straightforward.

The time-evolving wave packet is now a function of the arrangement coordinates just
described, and may be written � n�ðR
, ~��
, ~��
, r
jtÞ. The initial t¼ 0 wave packet is
given by

� n�ðR
, ~��
, ~��
, r
j0Þ ¼ � j�ðR
, ~��
, ~��
j0Þ�nðr
Þ ð72Þ

where � j�ðR
, ~��
, ~��
j0Þ is defined in equation (54). As with the time-independent
wave function, it is assumed that one can switch between the three sets of
coordinates ðR
, ~��
, ~��
, r
Þ, and that the wave packet in arrangement 
 is represented
in terms of coordinates adapted to that arrangement. As above, we assume that the
interaction potential extends for a finite range, such that it can be neglected for
R
 > R0. Hence � n�ðR
, ~��
, ~��
, r
j0Þ describes the reactive collision on and close to
the scattering potential.

By analogy with equation (20), we can take the time-to-energy Fourier transform
of � n�ðR
, ~��
, ~��
, r
jtÞ to obtain the TIWP solution

� n�ðR
, ~��
, ~��
, r
jE Þ ¼
1

2��hh

Z 1
0

eiEt=�hh� n�ðR
, ~��
, ~��
, r
jtÞ dt: ð73Þ
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One can generalize equation (21) (see the appendix) so as to obtain the relation

� n�ðR
, ~��
, ~��
, r
jE Þ ¼
�hh2kn

	
Aðknjko, z0Þ
� n�ðR
, ~��
, ~��
, r
jE Þ ð74Þ

between the time-independent wave function and the TIWP. Both the time-
dependent wave packet and the TIWP can be expanded as a sum over J:

� n�ðR
, ~��
, ~��
, r
jtÞ ¼
X1
J¼0

� n�
J ðR
, ~��
, ~��
, r
jtÞ ð75Þ

� n�ðR
, ~��
, ~��
, r
jE Þ ¼
X1
J¼0

� n�J ðR
, ~��
, ~��
, r
jE Þ ð76Þ

and the partial wave components can be further expanded in terms of the basis
functions Yn�M

J ð�
,�
; ~��
, ~��
; r
Þ of equation (66).
To relate the wave packet � n�ðR
, ~��
, ~��
, r
jtÞ to the DCS, one projects on to

probe packets of the form

�n0�0 ðR
0 , ~��
0 , ~��
0 , r
0 j�pÞ ¼ � j0�0 ðR
0 , ~��
0 , ~��
0 j�pÞ�n0 ðr
0 Þ ð77Þ

where � j0�0 ðR
0 , ~��
0 , ~��
0 j�pÞ is defined in equation (57). Hence the only complication
over the BF rigid-rotor case of section 3.2 is that one must project out the vibrational
eigenstates, and repeat the projections for each value of 
0. The projections yield the
state-to-state, time-dependent scattering amplitudes

f n�
n0�0 ð�p, tÞ ¼ �n0�0 ð�pÞj�

n�OUTðtÞ
� �

: ð78Þ

Following section 3.2, we define the time-dependent DCS

d�n0�0 n�

d�
ð�, tÞ ¼ f n�

n0�0 ð�, tÞ
�� ��2 ð79Þ

and the time-independent scattering amplitude

gn�
n0�0 ð�,E Þ ¼

1

2��hh

Z 1
0

eiEt=�hhf n�
n0�0 ð�, tÞ dt: ð80Þ

We can use equations (73) and (74) to write the latter as

gn�
n0�0 ð�,E Þ ¼

	
Aðknjko, z0Þ

�hh2kn
�n0�0 ð�pÞj�

n�OUTðE Þ
� �

ð81Þ

and can then expand � n�OUTðR
, ~��
, ~��
, r
jE Þ using equations (65) and (67), and
expand the plane wave part of the probe packet using equation (40). This gives an
expression which, when transformed to the SF frame,4 yields a generalized version of
equation (41), from which one obtains the relation

f n�
n0�0 ð�,E Þ ¼

gn�
n0�0 ð�,E Þ

Fn
n0 ðko, z0, kp, qpjE Þ

ð82Þ

4The algebra required is not difficult, but is lengthy, and includes two applications of the
Clebsch–Gordan series [39]. It is left as an exercise for the reader.
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with

Fn
n0 ðko, z0, kp, qpjE Þ ¼

4�2i	


knkn0�hh2
Aðknjko, z0ÞAðkn0 jkp, qpÞ

�: ð83Þ

Having obtained f n�
n0�0 ð�,E Þ, one can calculate the DCS using equation (71). This

completes the derivation of the PWP formulation for atom-plus-diatom reactive
scattering, and its relation to the conventional time-independent treatment of these
systems. The same simple relation between the time-evolving wave packet and the
DCS holds for AþBC reactive scattering, as for atom–rigid-rotor scattering. Hence
one can use the PWP approach to interpret the DCS (measured in a reactive
scattering experiment) in terms of the time-evolution of the wave packet
� n�ðR
, ~��
, ~��
, r
jtÞ.

4. Implementation and examples

The PWP approach has now been applied numerically to a range of AþBC
reactions, including the prototypical HþD2 [1, 2, 8] and FþHD [3, 4] reactions;
these applications are reviewed in some detail in sections 4.2–4.4. Section 4.1 explains
the general numerical strategy used when applying the PWP approach.

4.1. Overall strategy
One might think that the formulae of section 3 could be used as the basis of a

numerical method for solving the time-dependent Schrödinger equation describing
the motion of the nuclei. Probably such a method could be devised, but it would be
numerically inefficient, for reasons which are summarized in refs. [7] and [8]. Instead,
we apply the formulae of section 3 indirectly. The overall strategy [8] is to compute
the time-independent wave functions � n�

J ðR
, ~��
, ~��
, r
jE Þ, over a grid of E values.
We then recover the � n�J ðR
, ~��
, ~��
, r
jE Þ from equation (74), and compute the wave
packet � n�

J ðR
, ~��
, ~��
, r
jtÞ by evaluating the inverse of equation (73). The time-
dependent DCS is obtained in a similar manner, by computing the time-independent
scattering amplitude f n�

n0�0 ð�,E Þ over a grid of E values, converting it to gn�
n0�0 ð�,E Þ

using equation (82), and obtaining f n�
n0�0 ð�, tÞ from the inverse of equation (80).

One advantage of this approach is that one may apply equations (74) and (82)
any number of times, using different energy filters. This aspect is discussed in
section 4.3.2 below. The time-independent quantities � n�

J ðR
, ~��
, ~��
, r
jE Þ and
f n�
n0�0 ð�,E Þ could, in principle, be computed using a standard coupled-channel method
[42–44] of solving the time-independent Schrödinger equation. However, since the
calculations need to be repeated over a grid of E values, and since the wave function
is required as a function of the coordinates, it is usually more efficient to obtain
� n�

J ðR
, ~��
, ~��
, r
jE Þ and f n�
n0�0 ð�,E Þ from a series of fixed-J, wave packet calculations

[8, 27] (which propagate Gaussian initial wave packets, and are not, therefore, based
on the PWP approach).

When applying equation (74), it is convenient to restrict the range of initial plane
wave packets to those whose momentum composition takes the form

Aðknjko, z0Þ ¼
kn�hh

2

	

Fnðko, z0jE Þe

�iknz0 ð84Þ
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where Fnðko, z0jE Þ is a real function of E. The phase factor e�iknz0 serves to localize
the initial plane wave packet about z ¼ z0. From equation (74), this form of
Aðknjko, z0Þ gives

� n�J ðR
, ~��
, ~��
, r
jE Þ ¼ Fnðko, z0jE Þe
�iknz0 � n�

J ðR
, ~��
, ~��
, r
jE Þ: ð85Þ

When using this form of wave packet, it is convenient to define the momentum filter
of the probe packets to be of the form

Aðkn0 jkp, qpÞ ¼
ikn0

4�2
e�ikn0qp ð86Þ

so that

gn�
n0�0 ð�,E Þ ¼ Fnðko, z0jE Þe

�iðknz0�kn0qpÞf n�
n0�0 ð�,E Þ: ð87Þ

This choice of Aðknjko, z0Þ and Aðkn0 jkp, qpÞ makes interpreting the DCS particularly
straightforward. If one computes the energy-filtered DCS

d�FILT
n0�0 n�

d�
ð�,E Þ ¼ gn�

n0�0 ð�,E Þ
�� ��2¼ Fnðko, z0jE Þ

� �2d�n0�0 n�

d�
ð�,E Þ ð88Þ

then one knows that the wave packet and time-dependent DCS describe precisely the
dynamics that produces d�FILT

n0�0 n�=d�ð�,E Þ. This approach is particularly useful
when Fnðko, z0jE Þ has the form of a flat window (such as a wavelet [45]). In this case,
Fnðko, z0jE Þ effectively ‘cuts out’ an interesting energy-region from the DCS, and is
then used to generate the plane wave packet and time-dependent DCS that visualize
the dynamics in this energy region. We illustrate this approach in section 4.2 below.

Although we recommend that the PWP equations be applied indirectly, there is
one instance when it is advantageous to apply the equations directly. This is to
obtain the DCS from the wave packet � n�ðR
, ~��
, ~��
, r
jtÞ by performing directly the
integration in equation (78), using numerical quadrature. It is worth computing
some of the DCSs in this way (for a small number of final states) in order to check
that the computed wave packets map correctly on to the DCS.

4.2. Direct and time-delayed mechanisms in HþD2 and FþHD
To illustrate the above, we review recent applications of the PWP method to the

prototypical HþD2 and FþHD reactions. Figure 6 shows snapshots of the time-
evolving wave packet computed [1, 8] for the HþD2 (v ¼ 0, j ¼ 0) reaction. The
packet has been projected on to the v0 ¼ 3 state of the HD product, and multiplied
by a coordinate filter that restricts the projection to the product side of the transition
state. The upper and lower halves of the two-dimensional plots in figure 6 are
symmetric, because they represent a two-dimensional cut through the three-dimen-
sional scattering, which is cylindrically symmetric about the reagent approach axis.
Note that each plot has been multiplied by a factor of sin � (to give a fair repre-
sentation of the flux per solid angle [8]), and this produces the node along the z-axis.

The wave packets used in figure 6 were computed using the approach of
section 4.1. The energy filter Fnðko, z0jE Þ was chosen to be a distributed approx-
imating functional (DAF) [45], which has the flat form shown in figure 7(a). This
effectively cuts a section out of the DCS, to produce the filtered DCS
[d�FILT

n0�0 n�=d�ð�,E Þ of equation (88)], as illustrated in figure 7(b) for the (00!00)
DCS. Following section 4.1, the wave packet of figure 6 represents the dynamics
that produces this section of the (00!30) DCS. The full (00!30) DCS is shown in
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figure 8, together with the time-dependent DCS, which contains the same spread of
energies as the wave packet, and illustrates the mapping of the packet on to the
cross-section. These results show very clearly that the forward part of the DCS is
produced by a time-delayed mechanism, whose product first appears over the
transition state at about t ¼ 35 fs, in the region of � ¼ 60�.

Figure 9 shows a similar plot to figure 6, obtained for the FþHD (v ¼ 0, j ¼ 0)
reaction [3]. The packet has been projected on to two different quantum states of the
HD product (shown in different colours). The spread of energies contained in the
packet goes from threshold to about 0.15 eV. The wave packet shows that, even
in this low-energy range, the FþHD reaction undergoes four different reaction
mechanisms, two direct, and two time-delayed.

This last example illustrates one of the main advantages of the PWP approach.
It has the ability to represent clearly different reaction mechanisms, by visualizing
their separation in time and scattering direction, and is able to map each mechanism
on to the DCS. Below, we will explain how to exploit this last aspect in detail, using
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Figure 6. Snapshots from a plane wave packet description of the HþD2(v ¼ 0, j ¼ 0) !
HDþD reaction. The contours at times t > 0 are obtained by projecting the wave
packet on to the HD(v0 ¼ 3, j0 ¼ 0) rovibrational wave function, taking the square
modulus, and multiplying by sin �. The contours at time t ¼ 0 show the initial HþD2

plane wave packet. The circles are of radius R ¼ 3.5 a.u. and give a rough indication
of the extent of the transition state region. Two reaction mechanisms are visible,
separated by a time delay of about 25 fs. (Reproduced with permission from ref. [1].)
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time and energy filters to disentangle contributions from different reaction mechan-

isms in the DCS. By using the language ‘reaction mechanism’ we are tacitly assuming

a semiclassical description of the dynamics, in which different mechanisms occupy

different regions of phase space. We know from the success of quasi-classical trajec-

tory (QCT) methods [46] that such a picture is usually valid for reactions. The

PWP approach complements the QCT approach, by showing how the dynamics of

the mechanisms is changed by quantum effects. For example, the magnitude of the

forward-scattered mechanism in HþD2 is about three times greater in the quantum

than in the QCT treatment [47], and shows marked interference with the direct

mechanism (see below). In FþHD, the two time-delayed mechanisms do not appear

at all in a QCT calculation (since they are caused by quantum resonances [48]), but

the direct mechanisms are well reproduced [49].

We must emphasize that the PWP approach complements, but does not supplant,

the standard time-independent quantum and semiclassical methods of analysing the

DCS. In fact, use of such methods is essential, in order to obtain as complete a

picture as possible of the dynamics. For example, a time-independent analysis on

HþD2 [50] showed that the time-delayed mechanism is caused by ‘quantized

bottleneck states’ [51, 52], formed at the adiabatic threshold energies. One can

estimate that there are about 30 of these states present (several for each contributing

partial wave) in the forward-scattered part of the wave packet. The PWP approach

shows how these states superpose, to give one, simple, time-delayed mechanism.

It also shows how this mechanism interferes with the direct mechanism (see below).

In FþHD, time-independent calculations [48, 53] have identified a series of

Feschbach resonances (one per partial wave), formed at the reaction threshold.
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Figure 7. (a) The energy filter Fnðko, z0jEÞ used to produce the wave packet of figure 6.
(b) Effect of the energy filter on the DCS. The solid line is the state-to-state DCS
d�000 000=d� ð� ¼ 180�,EÞ; the dashed line is the corresponding filtered DCS
d�FILT

000 000=d� ð� ¼ 180�,EÞ of equation (88). (Reproduced with permission from
ref. [8].)
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- cosR  
Figure 9. Snapshots from a plane wave packet description of the FþHD (v ¼ 0, j ¼ 0) !

HFþD reaction, in the collision energy range E ¼ 0–0.15 eV. The square modulus of
the initial FþHD plane wave packet (blue) is plotted in the 0 fs snapshot. The later
snapshots plot the square modulus of the scattered wave packet, projected on to
asymptotic HF quantum states (v0 ¼ 2, j0 ¼ 0) (purple) and (v0 ¼ 3, j0 ¼ 0) (green).
The frame at 300 fs shows clearly the two direct, and the two time-delayed
mechanisms. The latter are trapped in two rings, between R ¼ 3.5–4.0 bohr, and R ¼
5–8 bohr. (Reproduced with permission from ref. [3].)
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Figure 8. The time-dependent and time-independent DCS, d�300 000=d� ð�, tÞ and
d�300 000=d� ð�,E Þ, corresponding to the wave packet of figure 6. The energies on
either side of the filter F nðko, z0jE Þ (which are not contained in the time-dependent
DCS or wave packet) are shaded grey. Both the DCSs in this figure have been
multiplied by a factor of sin �. (Reproduced with permission from ref. [8].)
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The PWP approach reveals the time-delayed dynamics that result when these reso-
nances superpose.

4.3. Using time and energy filters to interpret the DCS
One can obtain new insights from the PWP approach, simply by inspecting wave

packets such as those in figures 6 and 9. However, one can often make more detailed
analyses, by using the PWP approach to decompose the DCS into contributions
from different mechanisms. This is done by applying time and energy filters to
the scattering amplitudes, as described below. Such approaches are particularly
useful when untangling the effect on the DCS of quantum interference between
mechanisms.

4.3.1. Time filters: interfering direct and time-delayed mechanisms in HþD2

One thing that is not evident in figure 6 is that the time-delayed mechanism has a
tail, which extends round into the backward direction. The tail may be visualized by
increasing the number of contours in figure 6, or, equivalently, in the time-dependent
DCS of figure 8. The latter option is plotted in the centre of figure 10 (taken
from Ref. [2]). Since the tail extends back to � ¼ 180�, one can expect to see effects
in the backward-scattered DCS caused by interference of the tail with the direct
mechanism.

Reference [2] investigated these effects, as follows. The time-dependent scatter-
ing amplitude f n�

n0�0 ð�, tÞ was computed using the approach described in section 4.1,
and was then multiplied by two time-filters. The first filter extended from t¼ 0 fs
to the cut-line (shown in grey in figure 10), and thus captured the contribution
to f n�

n0�0 ð�, tÞ from the direct mechanism. The second filter extended from the cut line to
t¼ 120 fs, and thus captured the contribution from the time-delayed mechanism.
Both the filtered amplitudes were Fourier-transformed, to produce the DCSs shown
at the bottom of figure 10. These are the DCSs that would have been obtained if each
mechanism had been able to operate separately, without interfering with the other
one. Comparison with the full DCS (top of figure 10) shows that interference
between the two mechanisms produces a major effect: there is a series of humps (as a
function of E) in the backward direction of the full DCS, which is completely absent
from the direct DCS. The humps are present in the time-delayed DCS, but are too
small to see clearly in figure 10. Thus quantum interference with the direct
mechanism amplifies these humps by an order of magnitude (as in heterodyne
light scattering). It is because of this interference that the humps are so pronounced,
and can be detected experimentally [54]. Time-independent calculations [54] suggest
that the humps are themselves a result of interference, between different quantized
bottleneck states in the time-delayed tail.

This approach of applying time filters to f n�
n0�0 ð�, tÞ is likely to be useful whenever

direct and time-delayed mechanisms interfere in the DCS. A similar application to
the above was made to the FþHD reaction [4], and identified patterns in the DCS
caused by interference between the resonant and direct mechanisms.

4.3.2. Energy filters: probing the FþHD tunnelling resonance
In addition to using time filters, the DCS can sometimes also be analysed using

energy filters. This was demonstrated for the FþHD reaction in ref. [4]. To use
energy filters in this way, one has simply to apply the procedure of section 4.1 several
times, using different choices of Fnðko, z0jE Þ in equations (84)–(88). In Ref. [4],
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this procedure was generalized somewhat, by making Fnðko, z0jE Þ J-dependent. A
J-dependent filter has the effect of isolating a region in the E�� plane from the DCS,
and of generating a wave packet that illustrates the scattering into this region.

The main results of the analysis of ref. [4] are reproduced in figures 11 and 12.
Figure 11 shows selected state-to-state reaction probabilities. Each probability has a
peak, just below the classical threshold for reaction, which is caused by a resonance
that is formed by tunnelling, and trapped on the product side of the transition state
[48, 53]. It is therefore possible to design J-dependent energy filters, each of which
isolates the peak, as shown in figure 11(b). These J-dependent filters were used to
construct the time-evolving wave packet shown in figure 12(a). Comparison of this
packet with figure 9 confirms that the earlier of the two time-delayed mechanisms is
produced by a superposition of the threshold resonance peaks, and that the energy
filters have successfully separated out this mechanism from the other three.
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Figure 10. Diagram illustrating the use of time filters to analyse the DCS
d�300 000=d� ð�,EÞ of figure 8. The central plot is a magnified version of
d�300 000=d� ð�, tÞ of figure 8, which shows clearly the backward-scattered tail of the
time-delayed mechanism. Time filters [2] are applied to the left and right of the cut-
line (grey), to produce separate cross-sections for the direct and time-delayed
mechanisms. The series of humps visible in the backward direction come from the
time-delayed mechanism, and are magnified approximately sevenfold by quantum
interference with the direct mechanism. (Reproduced with permission from ref. [2].)
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Figure 12(b) illustrates another use of energy filters, which is to produce focused
wave packets. It is easy to vary the position of the initial plane wave packet, by
changing the value of z0 in the phase factor of equation (84). Typically, the value of
z0 will be slightly larger than R0 (the smallest distance at which the interaction
potential can be neglected). However, z0 can also take a value smaller than this; for
example, it can be set to a value Rt close to the transition state, on the reagent side.
In this particular case, the resulting wave packet corresponds to a plane wave packet
that is initially confined to z > R0, where it is rather diffuse (along the z-direction).
The packet will then become compact, or ‘focused’ (along the z-direction) when it
reaches z¼�Rt.

Such a choice of z0 was used to generate the wave packets shown in figure 12(b).
The same J-dependent Fnðko, z0jE Þ was applied as in figure 12(a), but z0 was set to
�3 a.u., in order to focus the wave packet just before it crosses the transition
state. The focusing has a drastic effect on the wave packet: it eliminates the spreading
that the packet undergoes in figures 9 and 12(a), during the F–HD approach. This
spreading is considerable, because the range of translational energies in the packet is
close to threshold. The spreading changes with J (because the position of the
resonance peak changes), and hence the spreading affects the timing of the scattering.

0 0.05 0.10 0.15
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0 0.05 0.10 0.15
0
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P
J

(0
0 
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)

P
J

(0
0 
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J=5

J=0

J=15
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J=20

(a) Unfiltered Probabilities

(b) Energy-filtered Probabilities

Figure 11. Selected fixed-J reaction probabilities PJ ð00! 20Þ for FþHD (v¼ 0, j¼ 0) !
HF (v0 ¼ 2, j0 ¼ 0)þD. The PJ ð00! 20Þ in (a) are unfiltered; the PJ ð00! 20Þ in (b)
have been multiplied by J-dependent energy filters in order to isolate the Feshbach
resonance peaks. (Reproduced with permission from ref. [4].)
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By removing the spreading, the focused packet of figure 12(b) reveals that the
resonances produce a ‘Catherine wheel’, in which the FHD complex rotates through
about 180�. It should be emphasized that, despite the difference between figures 12(a)
and 12(b), these two wave packets provide equivalent descriptions of the same
physical process. Figure 12(b) can be interpreted immediately by eye, whereas to
interpret figure 12(a), one must take into account the effects of the spreading.

4.4. Visualizing the wave packet
It is a major challenge to represent graphically the time-evolving wave packet

which, even in an AþBC reaction, has five dimensions (ignoring the �-dependence).
The approach used to generate figures 6, 9 and 12 was to project the wave packet on
to the rovibrational states of the isolated diatom. This approach effectively
summarizes the detailed description of the dynamics contained in the wave packet:
it shows how many mechanisms are present, when, and in which direction, they
scatter, and how the mechanisms interfere. By projecting on to a variety of final
states, one can check that the projections are not misrepresenting the dynamics. For

201 fs 262 fs 323 fs 383 fs

444 fs 505 fs 566 fs 620 fs

-19 fs 26 fs 71 fs 115 fs

160 fs 205 fs 249 fs 294 fs

(a) Unfocused HF(v=2,3,j=0) packets

(b) Focused HF(v=2,3,j=0) packets

Figure 12. (a) Same as figure 9, except that the wave packet was obtained using the
J-dependent energy filters illustrated in figure 11. This filtered packet contains mostly
just one of the four reaction mechanisms, which is produced by the superposition of
Feshbach resonances. (b) Same as (a), except now the wave packet has been focused,
so as to remove artifacts caused by spreading of the packet. The resonances
superpose to produce a beautiful ‘Catherine wheel’ rotation. (Reproduced with
permission from ref. [4].)
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example, in FþHD, it was necessary to project on to two states (v0 ¼ 2 and v0 ¼ 3) in
order to represent the four mechanisms in this reaction (see figures 9 and 12).

Another approach to representing the wave packet is to show cuts through the
wave packet at different scattering angles �. Such plots give a more detailed picture
of the dynamics on the potential energy surface, at the cost of making it less easy to
follow the scattering into space of the packet. They should therefore be used in
conjunction with projection plots (such as those of figures 6, 9 and 12).

Figure 13 shows cuts at four scattering angles, taken through the wave packet
� n�ðR
, ~��
, ~��
, r
jtÞ, for the HþH2 reaction. Each cut is plotted using the hyper-
spherical coordinates of ref. [41]. The hyper-radius � (the overall separation of the

t = 20.00 fs

·

 q = 175˚

·

  q =120˚

·

 q = 60˚

·

 q = 30˚

H H HB C A

H H HC A B

H + H HA B C

HA

HB HC

H + H HC A BH + H HB A C

·

u
x

~

(a)

(b)

Figure 13. Hyper-spherical coordinate representation of a plane wave packet description of
the HþH2 (v ¼ 0, j ¼ 0) reaction. (a) Snapshot at t¼ 0, and scattering angle
� ¼ 175�. The coordinates euu and � are functions of the hyper-angles [5, 41], and the
wave packets are plotted at various values of the hyper-radius � [¼3.1 (magenta), 3.9
(blue), 4.7 (green), and 5.5 (red) a.u.]. The black contours show the H3 potential at
� ¼ 3:9 a.u. Various geometries of the three atoms are shown on different parts of the
plot. The conical intersection is at the centre. (b) Snapshot at t¼ 120 fs, showing
additional scattering angles. (Adapted with permission from ref. [5].)
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atoms) is fixed at four different values, and the plots show the wave packet as a

function of the hyper-angles (the other two internal degrees of freedom, which

describe the relative arrangement of the three atoms). Hence these plots represent

four of the five degrees of freedom (the degree of freedom not shown is the rotation

of the three atoms about the scattering direction). The plots were used to demon-

strate that the HþH2 reaction dynamics involves almost no encirclement of the

conical intersection, and can therefore not be expected to show large geometric

(Berry) phase effects.

5. Outlook and conclusions

The PWP approach interprets differential cross-sections directly in terms of

quantum wave packets. It is applicable to the general two-body quantum scattering

problem, and complements standard, time-independent approaches. The PWP

approach is particularly useful for describing reactions, or other systems, in which

the scattering behaves semiclassically, and is thus readily understood in terms of

localized wave packet dynamics. Much of the dynamics in such systems can be

described well by quasi-classical trajectory (QCT) methods [46], and the PWP

approach complements QCT approaches by highlighting difference due to quantum

effects. So far, the PWP approach has been applied to a variety of three-atom reac-

tive scattering systems [1–5, 7, 8], and is currently being extended to reactions with

four or more atoms.

In these applications, the PWP approach made it possible to identify and isolate

different reaction mechanisms, and to map each mechanism on to the differential

cross-section. Isolating the mechanisms was straightforward, because they separated

cleanly, as a function of time [2, 3], or of energy [4], and could thus be split apart

using time or energy filters. It should be possible to generalize this approach, to treat

mechanisms that overlap in time or energy. If we assume that different mechanisms

occupy different regions of phase space, then it should be possible to isolate each

mechanism by applying general phase-space filters to the wave packet. Probably the

best way to construct these filters will be to adapt closed-loop control theory [55].

Such techniques would also be applicable to QCT calculations [46], which could be

compared with the PWP results to reveal quantum effects.

One can think of the PWP approach as describing the scattering in terms of a

hypothetical femtochemistry experiment. Perhaps, in the not too distant future, it

will be possible to design real femtochemistry experiments able to study quantum

scattering, and hence full bimolecular reactions.5 Such experiments would measure

quantities that would be closely related to the ‘time-dependent differential cross-

sections’ obtained from the PWP approach. However, for the foreseeable future, the

most detailed source of data on bimolecular reactions is likely to remain the time-

independent reactive scattering experiment. The latest experiments [11–13] can probe

the angular scattering in an impressive level of detail, and present a wonderful source

of puzzles to be interpreted by theory.

5To our knowledge, no femtochemistry experiment has yet been done on a full
bimolecular reaction; the closest to such an experiment are the studies of photoinduced
reactions in van der Waals molecules; see e.g. [15].
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Appendix

To prove equation (21) we use the approach given in ref. [30] [which gives a very
good introduction to the role of time-independent wave packets (TIWPs) in
quantum scattering]. Adopting a schematic notation, we write the TIWP
� jmj ðR, �,�jE Þ of equation (20) in the form

� ¼
i

2�
G�ð0Þ: ð89Þ

Here, G�ð0Þ denotes the operation upon the initial wave packet of the Green’s
function corresponding to the hamiltonian H, with boundary conditions consistent
with equation (22). The Lippmann–Schwinger equation for G may be written

G ¼ GPW þ GVGPW ð90Þ

where GPW is the Green’s function corresponding to the hamiltonian H0

(non-interacting A and BC), and V denotes, schematically, the action of the A–BC
interaction potential. Writing

�PW ¼
i

2�
GPW�ð0Þ ð91Þ

and noting that � jmj ðR, �,�jE Þ satisfies

� ¼ �PW þ GV�PW ð92Þ
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we see that equation (21) must be satisfied provided that

� jmj PWðR, �,�jE Þ ¼
	Aðkjjko, z0Þ

�hh2kj
� jmj PWðR, �,�jE Þ: ð93Þ

To prove the latter relation, we have simply to note that

� jmj PWðR, �,�jtÞ ¼ �PWðzjko, z0jtÞYjmj
ð�,�Þe�i
j t=�hh ð94Þ

where � jmj PWðR, �,�jtÞ is the time-dependent wave packet which is the time-
to-energy Fourier transform of � jmj PWðR, �,�jE Þ. We can then write

� jmj PWðR, �,�jtÞ ¼ �PWðzjko, z0jE � 
jÞYjmj
ð�,�Þ: ð95Þ

Now, �PWðzjko, z0jE � 
jÞ is identical to a TIWP for a free particle of mass 	, with
energy E � 
j . From ref. [30] we know that this TIWP satisfies

�PWðzjko, z0jE � 
jÞ ¼
	Aðkjjko, z0Þ

�hh2kj
eikjz ð96Þ

which proves equation (93) and hence equation (21).
To extend the argument above to prove equation (74) for AþBC reactive

scattering, one replaces Yjmj
ð�,�Þe�i
j t=�hh in equation (94) by Yj�ð ~��
, ~��
Þ�nðr
Þe

�i
nt=�hh,
then obtains equation (96), with 
n in place of 
j, and kn in place of kj.

The PWP approach to scattering theory 251

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1


